MAT 210

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS

2018 /2019 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (APPLIED STATISTICS)

ALUPE UNIVERSITY COLLEGE

COURSE CODE: COURSE TITLE: MAT 210

CALCULUS II

DATE: 14TH DECEMBER, 2018

TIME: 9.00 AM - 12.00 PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 5 PRINTED PAGES

PLEASE TURN OVER

MAT 210

REGULAR-MAIN EXAM

MAT 210: CALCULUS II

STREAM:BSC(APP.Stat)

DURATION:3 Hours

.....

INSTRUCTION TO CANDIDATES

i) Answer ALL questions in SECTION A and any other THREE ques-

tions in **SECTION** B.

ii) Do not write on the question paper.

SECTION A: [31 MARKS]

Question One : [16 marks]

a) Evaluate the given integrals

- i) $\int (2e^x + \frac{6}{x} + ln2)dx$ 3mks
- ii) $\int \frac{x^2 + 3x 2}{\sqrt{x}} dx$ 3mks

iii)Compute the area bounded between the curves

 $y = x^3$ and y = 4x 3mks

b) Compute the following double integral over the indicated rectangle.

 $\int \int \frac{1}{(2x+3y)^2} dx dy, \ \mathbf{D} = [0,1] \mathbf{X}[1,2].$ 3mks

c) Evaluate the following definite integral.

1

Question Two : [15 marks]

a) Find the first 4 terms of the taylors series for the function $\ln x$ cer	ntered
at $a = 1$.	4mks
b) Find the following antiderivatives:	
i) $\int e^{2x} \cos(x) dx$	3mks
ii) $\int sin^2 x cos^2 x dx$	3mks
c) Determine all the numbers c which satisfy the conclusions of the	mean
value theorem for the following function	
$h(z) = 4z^3 - 8z^2 + 7z - 2$ on [2,5].	5mks
SECTION B: [39 MARKS]	
Question Three : [13 marks]	
Compute the following double integrals	
a) $\int_{2}^{4} \int_{1}^{2} 6xy^2 dy dx$	2mks
b) $\int_0^1 \int_1^2 \frac{1}{(2x+3y)^2} dy dx$	3mks
c) $\int_{-1}^{2} \int_{0}^{1} x e^{xy} dy dx$	3mks
d) $\int_0^1 \int_{-2}^{-1} x^2 y^2 + \cos(\pi x) + \sin(\pi y) dy dx$	3mks
e) $\int_{-2}^{3} \int_{0}^{\frac{\pi}{2}} x \cos^{2}(y) dy dx$	2mks

ALUPE

UNIVERSITY COLLEGE

Question Four : [13 marks]

Let f be twice differentiable function such that f(2) = 5 and f(5) = 2. Let g be the function given by g(x) = f(f(x)).

a) Explain why there must a value c for 2 < c < 5 such that f'(c) = -1.

3mks

b) Show that g'(2) = g'(5). Use this result to explain why there must be a value k for 2 < k < 5 such that g''(k) = 04mks c) Show that if f''(x) = 0 for all x, then the graph of g does not have a point of inflection. 3mks d) Let h(x)=f(x)-x. Explain why there must be a value r for 2 < r < 5such that h(x) = 03mks Question Five: [13 marks] a) Evaluate the following integral $\int \int \int_{B} 8xyz dv, B = [2,3]x[1,2]x[0,1]$ 4mks b) Determine the following antiderivatives i) $\int sinxcos^2 2x dx$ 4mks ii) $\int \frac{2x-3}{x^3-3x^2+2x} dx$ 5mks Question Six : [13 marks] a) Find the Taylor series for $f(x) = x^4 + x - 2$ about a = 14mks b) Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions i) $f(x,y) = (x^2 - 1)(y + 2)$ 3mks ii) $f(x, y) = e^{x+y+1}$ 3mks iii) $f(x,y) = e^{-x}sin(x+y)$. 3mks

3

Question Seven : [13 marks]

a) Determine if the following sequences converge or diverge. If the sequence converges determine its limit.

- i) $\left\{\frac{3n^2-1}{10n+5n^2}\right\}_{n=2}^{\infty}$ 3mks ii) $\left\{\frac{(-1)^n}{n}\right\}_{n=1}^{\infty}$ 3mks
- b) Compute $\int x^2 \arctan(2x) dx$ 3mks

c) Evaluate $\int \int_D 4xy - y^3 dA$, D is the region bounded by $y = \sqrt{x}$ and $y = x^3$.

END

ALUPE UNIVERSITY COLLEGE