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MAT 210

REGULAR-MAIN EXAM

MAT 210: CALCULUS II

INSTRUCTION TO CANDIDATES

i) Answer ALL questions in SECTION A and any other THREE ques-

tions in SECTION B.

ii) Do not write on the question paper.

SECTION A: [31 MARKS]

Question One: [16 marks]

a) Evaluate the given integrals

i) J(2eX + ~+ ln2)dx 3mks

ii) J x2+3x-2d11 Vx x 3mks

iii)Compute the area bounded between the curves

y = x3 and y = 4x 3mks

b) Compute the following double integral over the indicated rectangle,

J J (2X~3y)2dxdYl D=[0,1]X[1,2]: 3mks

c) Evaluate the following definite integral.

4mks
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a) Find the first 4 terms of the taylors series for the function lnx centered

Question Two: [15 marks]

at a = 1. 4mks

b) Find the following antiderivatives:

i) J e2Xcos(x)dx 3mks

3mks

c) Determine all the numbers c which satisfy the conclusions of the mean

value theorem for the following function

h(z) = 4z3 - 8z2 + 7z - 2 on [2,5]. 5mks

SECTION B: [39 MARKS]

Question Three: [13 marks]

Compute the following double integrals

a) J24 J126xy2dydx

b) J0
1
J1

2
(2X}3y)2 dydx

c) J~1 J01xexYdydx

d) J~ J~21 x2y2 + cos(1fx) + sin(1fy)dydx

2mks

3mks

3mks

3mks

2mks

Question Four: [13 marks]

Let f be twice differentiable function such that f(2) = 5 and f(5) = 2.

Let g be the function given by g(x) = f(J(x)).

a) Explain why there must a value c for 2 < c < 5 such that. j' (c) = -1.
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a value k for 2 < k < 5 such that g"(k) = a 4mks

3mks

b) Show that g' (2) = g' (5). Use this result to explain why there must be

c) Show that if i" (x) = a for all x, then the graph of 9 does not have a

point of inflection. 3mks

d) Let h(x)=f(x)-x. Explain why there must be a value r for 2 < r < 5

such that h(x) = a 3mks

Question Five: [13 marks]

I I IE 8xyzdv, B=[2,3]x[1,2]x[O,1] 4mks

a) Evaluate the following integral

b) Determine the following antiderivatives

i) I sinxcos22xdx 4mks

5mks

Question Six: [13 marks]

a) Find the Taylor series for f(x) = X4 + X - 2 about a = 1 4mks

b) Find ¥X and U for the following functions

i) f(x, y) = (x2 - l)(y + 2) 3mks

ii) f(x, y) = ex+y+1 3mks

iii) f(x, y) = e-Xsin(x + y). 3mks
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Question Seven: [13 marks]

a) Determine if the following sequences converge or diverge. If the se-

quence converges determine its limit .

.) { 3n2-1 }OO
1 lOn+5n2 n=2

3mks

ii){(-l)n}OO
n n=l 3mks

b) Compute I x2arctan(2x )dx 3mks

c) Evaluate I ID 4xy - y3dA, D is the region bounded by y = .JX and

3
Y = x. 4mks

END
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