

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2018/2019 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 110

COURSE TITLE:

BASIC CHEMISTRY I

DATE: 18TH DECEMBER, 2018

TIME: 2.00 PM - 5.00 PM

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 5 PRINTED PAGES

PLEASE TURN OVER

CHE 110

CHE 110: BASIC CHEMISTRY I

STREAM: BED (Science)

DURATION: 3 Hours

4

10

INSTRUCTIONS TO CANDIDATES

- *i.* Answer ALL questions from SECTION A and any other THREE questions from
- SECTION B.
- ii. Diagrams may be used whenever they serve to illustrate the answer.
- *iii.* Do not write on the question paper.

SECTION A (24 MARKS)

Question One

(Cu=29, Mg=12, Co=27, Na=11)

a)	What are the drawbacks of the Rutherford's atomic model?	(2 Marks)	
b)	What are the assumptions on which the Bohr theory of the structure of		
2	the hydrogen atom is based?	(3 Marks)	
c)	On what principles is the mechanical model of the atom based?	(1 Mark)	
d)	State the Heisenberg's uncertainty principle.	(1 Mark)	
e)	Give the names and symbols of the four quantum numbers required to	٢	
	define the energy of electrons in atoms. What do these quantum numbers		
	relate to, and what numerical values are possible for each?	(4 Marks)	
f)	Give the equation which explains the different series of lines in the atomic		
*	spectrum of hydrogen. Explain the various terms involved.	(1 Mark)	

Question Two

a)	Write the electronic configurations for Rb, Fe ²⁺ , Co and Na ⁺ .		(2 Marks)	
b)	Why does Helium have a smaller radius than Hydrogen atom?		(2 Marks)	
c)	What is a chemical bond.		(1 Mark)	
d)	Giving examples, discuss three different types of bonds.		(3 Marks)	
e)	What are some of the properties of ionic compounds?	1	(3 Marks)	
f)	What is a hydrogen bond?		(1 Mark)	

CI	ITE	1 1	0
	HE	11	U

	SEC	CTION B ALUPE UNIVE	217V A	Constantine and a second
Q	uestion Three	LIBR	ARY	STTFE
a)	What is meant by the following terms:			CONTRACTOR OF
	(i.) Orbital	- - -		(1 Mark)
	(ii.) Electronegativity			(1 Mark)
	(iii.) Electron affinity			(1 Mark)
	(iv.) Ionization energy			(1 Mark)
b)	Explain why the electron affinity of grou	up IIB elements is greater th	an zero.	(2 Marks)
c)	Give the properties of the coordinate coordinate	valent bond.		(3 Marks)
d)	With relevant examples, explain how po	larity of bonds varies with		
	electronegativities.		10	(2 Marks)
e)	What is London force?			(1 Mark)
Qı	lestion Four	· ·		
a)	Explain why water is a liquid at room ter	mperature while hydrogen s	ulphide is	S
	a gas at room temperature.			(3 Marks)
b)	Draw the Lewis structures of PCI ₅ , CIF ₃	and SF ₆ .	8	(3 Marks)
c)	What is the valence shell electron pair re	pulsion (VSEPR) theory?		(1 Mark)
d)	Predict the shapes of SF ₄ and NH ₃ .			(3 Marks)
		C 1 1 1		

e) Define oxidation and reduction in terms of oxygen, hydrogen and electrons. (2 Marks)

Question Five

a)	A 8.25	5g of an iron (II) salt was dissolved in 250 cm ³ of pure water. Aliquots		
~	of 25.	0 cm^3 were pipetted from this stock solution and titrated with 0.0200 m	ol	1
	dm ⁻³ p	ootassium manganate (VII) solution. The titration values obtained were		
	23.95	cm^3 , 23.80 cm^3 and 23.85 cm^3 .		
	(i.)	What titration value should be used in the calculation and why?	(1 Mark)	
	(ii.)	Write a full balanced redox equation for the reaction.	(2 Marks)	
	(iii.)	Calculate the moles of manganate (VII) used in the titration.	(2 Marks)	
	(iv.)	Calculate the moles of iron(II) ion titrated	(1 Mark)	
	(v.)	Calculate the mass of iron(II) titrated	(2 Marks)	
	(vi.)	Calculate the total mass of iron in the original sample of the iron(II)		
		salt.	(2 Marks)	
((vii.)	Calculate the % iron in the salt.	(2 Marks)	

28-

CHE 110

Question Six

a)	Define and give examples of state functions.	(1 Mark)
b)	Define the first law of thermodynamics.	(1 Mark)
c)	Show that $\Delta E = q_v$ at constant volume (V).	(1 Mark)
d)	Define standard enthalpy of combustion (ΔH_c^{0}), standard heat of	
	neutralization (ΔH_n^0) and standard enthalpy of formation (ΔH_f^0) .	(3 Marks)
e)	State Hess law.	(1 Mark)
f)	A 23:1 L container of He gas has a pressure of 3.54 atm. The gas is	
	transferred to a new container and the pressure in this container is 1.87 atm.	
	What is the volume of the new container?	(3 Marks)
g)	Explain how the experiments of Boyle, Charles, and Avogadro lead to the	
	formulation of the perfect gas equation of state.	(2 Marks)
Qu	lestion Seven	

a)	What	is equilibrium constant?	(1 Mark)
b)	What	is chemical equilibrium?	(1 Mark)
c)	What	is meant by the term 'common ion effect'?	(1 Mark)
d)	The s	blubility product of PbI ₂ is 7.1×10^{-9} mol ³ L ⁻³ . Calculate its solubility.	(3 Marks)
e)	Show	that for a 1^{st} order reaction, $-\ln(a-x) = kt + C$	(3 Marks)
f)	With	examples, explain the following radioactive processes;	
	(i.)	Alpha (a) emission	(1 Mark)
	(ii.)	Beta (β) emission	(1 Mark)
	(iii.)	Electron capture	(1 Mark)

CHE 110

			Alka Tran	sition I	rth Met Metals	als						С	Br	Не	Тс		
1 1 1.00794			Non Nob	er Meta metals e Gase hanoid	s				E.	7		solid	liquid	gas	synthe	tic	helium 2 He 4.00260
lithium 3	beryllium 4		E-Interior	noids	5			key	elemen atomic			boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li 6.941	Be 9.012182		Acti	Torus					sym	bol		B 10.811	C 12.0107	N 14.00674	O 15.9994	F 18.9984	Ne 20.179
sodium 11 Na 22.98977	magnesiu m 12 Mg 24.3050							,			4	aluminium 13 Al 26.981538	silicon 14 Si 28.0855	phosphoru s 15 P 30.97376	sulphur 16 S 32.065	chlorine 17 Cl 35.453	argon 18 Ar 39.984
otassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganes	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypto 36
K 39.0983	Ca 40.078	Sc 44.95591	Ti 47.867	V 50.9415	Cr 51.9961	25 Mn 54,93805	Fe 55.845	Co 58.9332	Ni 58.6934	Cu 63.546	Zn 65.409	Ga 69.723	Ge 72.64	As 74.9216	Se 78.96	Br 79.904	Kr 83.79
ubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenu m	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	tin 50	antimony 51	tellurium 52	iodine 53	xenor
Rb 35 4678	Sr 87.62	Y 88.90585	Zr 91.225	Nb 92.90638	42 Mo 95,94	Tc [98]	Ru 101.07	Rh 102.9055	Pd 106.42	Ag 107.8682	Cd 112.411	114.818	Sn 118.710	Sb 121.760	Te 127.60	126.9045	Xe 131.29
aesium 55	barium 56	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	rador 86
Cs	Ba	Lu 174.967	Hf 178,49	Ta 180.9479	W 183.84	Re 186,207	Os 190.23	Ir 192.217	Pt 195.078	Au 196,96655	Hg 200,59	TI 204,3833	Pb 207.2	Bi 208,980	Po [209]	At [210]	[222]
87 Fr [223]	radium 88 Ra [226]	lawrencium 103 Lr [262]	rutherfordiu m 104 Rf [261]	dubnium 105 Db [262]	seaborgiu m 106 Sg [266]	bohrium 107 Bh [264]	hassium 108 HS [269]	meitnerium 109 Mt [268]	darmstadtiu m 110 DS [271]	roentgeniu m 111 Rg [272]	ununbium 112 Uub [285]	204.0000	ununquadiu m 114 Uuq [289]	200.000			

lanthanum	cerium	praseodymiu	neodymiu	promethiu	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
57	58	m	m	m	62	63	64	65	66	67	68	69	70
La	Ce	59	60	61	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.9055	140.116	Pr	Nd	Pm	150.36	151.964	157.25	158.9253	162.50	164.930	167.259	168.934	173.04
		140.90765	144.24	[145]									CARLES STATISTICS