

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2017 /2018 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 103e

COURSE TITLE:

INTRODUCTION TO THERMODYNAMICS AND KINETICS

DATE: 27TH APRIL, 2018

TIME: 9AM – 12.00 NOON

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 5 PRINTED PAGES

PLEASE TURN OVER

A constituent college of Moi University

CHE 103e: INTRODUCTION TO THERMODYNAMICS AND KINETICS

STREAM: BED (Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- *i.* Answer ALL questions from section A and any THREE from section B.
- *ii.* Use the following physical constants where applicable:

Physical Constants

 $R=0.08206 \text{ atm } L \text{ } K^{-1} \text{ } mo\Gamma^{-1} \text{ } or \text{ } R=8.314 \text{ } J \text{ } K^{-1} \text{ } mo\Gamma^{-1} \text{, } Molar \text{ } Mass \text{ } of \text{ } N_2=28g,$ $1^{\circ}C=273K$

SECTION A (24 MARKS)

Question One

a)) Define the following terms:		
	i.	Chemical equilibrium	(1 Mark)
	ii.	Intensive property	(1 Mark)
	iii.	State Function	(1 Mark)
	iv.	Half-life	(1 Mark)
	v.	Rate law	(1 Mark)
b)	Differ	entiate between an ideal and a real gas.	(1 Mark)
c)	State t	he four main features of the ideal gas kinetic molecular theory.	(2 Marks)
d)	Fifty grams of N_2 occupies a volume of 750mL at 298.15 K. Assuming the gas		as
	behav	es ideally, calculate the pressure of the gas in atm.	(3 Marks)
e)	Define	e the van der Waals equation and explain what it takes into consideration	on. (1 Mark)

Question Two

- a) A neon-dioxygen mixture contains 70.6 g dioxygen and 167.5 g neon. If pressure of the mixture of gases in the cylinder is 25 bar. What is the partial pressure of dioxygen and neon in the mixture? (3 Marks)
- b) Explain how the compression factor varies with pressure and temperature and describe how it reveals information about intermolecular interactions in real

2

CHE 103e

	gases.	(2 Marks)
c)	What is chemical kinetics?	(1 Mark)
d)	State Le Chatelier's Principle.	(2 Marks)
e)	The half-life of a radioactive isotope A is 1997 years. How long does it	
	take for a sample of A to decay to 25% of its original radioactivity?	(3 Marks)
f)	What is activation energy?	(1 Mark)

SECTION B

ALUPE UNIVERSITY COLLEGE

Question Three

a) For a reaction between A and B, experiments with different initial concentrations of A and B were carried out. The results were as follows:

	Initial Concentration	Initial Concentration	Initial Rate			
1	0.01	0.02	0.0005			
2	0.02	0.02	0.0010			
3	0.01	0.04	0.0020			
i.	What is the order of reacti	on with respect to A and B	?	(3 Marks)		
ii.	Calculate the rate constant	using results of experiment	nt 1.	(1 Mark)		
iii.	What is the rate equation f	for the reaction?		(1 Mark)		
b) Derive the integrated rate equation for a second order reaction and plot						
the	e graph.			(3 Marks)		
c) Li	c) List two methods that can be used to measure the rate of a chemical					
rea	action.			(2 Marks)		
d) Li	st the factors that affect the	rate of a chemical reaction.		(2 Marks)		

Question Four

a)	Define the first law of thermodynamics.	(1 Mark)
b)	Show that for an adiabatic process, $\Delta U=0$.	(2 Marks)
c)	Define enthalpy. What does increase in the enthalpy of a system mean?	(2 Marks)
d)	Show that heat change at constant pressure (q_p) is given as	
	$\Delta H = q_P(3 \text{ Marks})$	

e) Prove that enthalpy, H is a state function	(2 Marks)			
f) Calculate the minimum work done at 25 °C on 2 moles of	of CO_2 to form			
a precipitate from a volume of 20L to a volume of 1L wl	nen CO ₂ is			
considered as a perfect gas.	(2 Marks)			
Question Five				
a) Give the rate law for the 0 order, 1 st order and 2 nd order react	tions. (2 Marks)			
b) What is the effect of temperature on activation energy?	(2 Marks)			
c) Define the Arrhenius equation and show how activation ener	gy is			
determined graphically	(3 Marks)			
d) Using the Boltzmann distribution, show the distribution of m	olecular			
energies in a gas.	(2 Marks)			
e) What is the difference between a homogeneous and heteroge	neous catalyst? (1 Mark)			
f) Give four characteristics of a catalyst.	(2 Marks)			
Question Six				
a) Show that work done in a reversible isothermal work is given	ı by			
$W = nRT \ln \left(\frac{V_i}{V_f}\right)$	(3 Marks)			
b) Argon gas at 1 atm expands reverse adiabatically to twice (2	<) its initial			
volume. Calculate its final pressure given that $y = 5 / 3$. (3)	Marks)			
c) Differentiate between reversible and irreversible process	(2 Marks)			
d) Show that at constant pressure, $q_p = \Delta U + P. dV$	(2 Marks)			
e) What is an adiabatic process? Show that for an adiabatic proc	$\Delta U = 0$ (2 Marks)			
Question Seven				
a) Define the following terms:	-			
i. Standard enthalpy of combustion (ΔH_c^{θ})	(1 Mark)			
ii. Standard reaction enthalpy $(\Delta H_r^{\theta})(1 \text{ Mark})$				
b) Show graphically the difference between an endothermic and exothermic				
reaction.	(1 Mark)			
c) State the laws of thermochemistry.	(2 Marks)			
d) State Hess law.	(1 Mark)			

4

ALUPE UNIVERSITY COLLEGE

e) Calculate the enthalpy for this reaction:

(6 Marks)

$$2C_{(s)} + H_{2(g)} \longrightarrow C_2 H_{2(g)} \Delta H^{\circ} = ?KJ$$

Given the following thermochemical equations:

$$C_{2}H_{2(g)} + \frac{5}{2}O_{2(g)} \rightarrow 2CO_{2(g)} + H_{2}O_{(l)} \Delta H^{\circ} = -1299.5 \, kJ$$

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} \Delta H^{\circ} = -393.5 \, kJ$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_{2}O_{(l)} \Delta H^{\circ} = -285.8 \, kJ$$

5