

MAT 210

OFFICE OF THE DEPUTY PRINCIPAL

ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2019 /2020 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE CS/ASC

COURSE CODE: MAT 210

COURSE TITLE: CALCULUS II

DATE: 5th DEC 2019

TIME: 9AM-12PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

Page 1 of 4

MAT 210

MAT 210: CALCULUS II

STREAM: BSc (ASC)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

- *i.* Answer ALL questions from section A and any THREE from section B
- *ii.* Do not write on the question paper.

SECTION A (31 MARKS): Answer all questions in this section.

QUESTION ONE (16 MARKS)

a)	State mean value theorem	(2 Marks)
b)	Find a value of c such that the conclusion of the mean value theorem is satisfif $f(x) = -2x^3 + 6x - 2$ on the interval $[-2,2]$	ed for (4 Marks)
c)	Use the mean value theorem to prove that for any two real numbers <i>a</i> and <i>b</i> , $ \cos a - \cos b \le a - b $	(4 Marks)
d)	Evaluate $\int x(x-5)^5 dx$	(4 Marks)
e)	Find the maclaurin series of $x^2 e^x$ at x=0	(2 Marks)

QUESTION TWO (15 MARKS)

a)	State Taylor's Theorem	(2 Marks)

- b) Find the first 4 terms of the Taylor series for the following functions:
 - i) $\ln x$ centered at a = 1 (3 Marks)
 - ii) $\frac{1}{x}$ centered at a = 1 (3 Marks)
 - iii) $\sin x$ centered at $a = \frac{\pi}{4}$ (2 Marks)

c) Evaluate

i.
$$\int_{2}^{3} \frac{1}{x} dx$$
 (3 Marks)
ii.
$$\int \ln(x-2)^{2}$$
 (2 Marks)

SECTION B [39 MARKS]: ANSWER ANY THREE QUESTIONS IN THIS SECTION

QUESTION THREE (13 MARKS)

a) Use substitution to evaluate to evaluate $\int \sin 5x dx$	(4 Marks)
b) Work out $\int_{0}^{1} \int_{\sqrt{x}}^{x+1} (2xy) dy dx$	(6 Marks)
c) Integrate $\int \frac{2-x}{x^2+5x} dx$	(3 Marks)
QUESTION FOUR (13 MARKS)	
a) Use integration by parts to evaluate $\int xe^x dx$	(5 Marks)
b) Evaluate $\int \tan^2 x \sec^4 x dx$	(5 Marks)
c) Integrate $\int \frac{dx}{\sqrt{49-x^2}} dx$	(3 Marks)
QUESTION FIVE (13 MARKS)	

(a) If $y = x^2 tz + 3xt^5 z$ find $\frac{\partial^2 y}{\partial x \partial t}$ (5 Marks)

(b) Find the value of x_0 given that $f(x) = x^3 - 3x^2 - 10x + 20$ on the interval (-1,5) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 where $a = -1$, & $b = 5$ (8 Marks)

(3 Marks)

QUESTION SIX (13 MARKS)

a) Calculate $\int [3\sqrt{x} + \sin x] dx$

Page 3 of 4

b) Find the area of the region bounded above in y = x + 6 and $y = x^2$ between 0 and 2 (5 Marks)

c) Evaluate
$$\int_{1}^{2} \int_{3}^{4} (y-x) dy dx$$

QUESTION SEVEN (13 MARKS)

Evaluate the following integrals

a)
$$\int x \sin^4 (3x^2 + 6) \cos(3x^2 + 6) dx$$
 (7 Marks)

b)
$$\int x^2 \sin x dx$$

(7 Marks) (6 Marks)

Page 4 of 4

(5 Marks)