

OFFICE OF THE DEPUTY PRINCIPAL
ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS

2018 /2019 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS/SCI/B.ST)

COURSE CODE:
 COURSE TITLE:

DATE: $10{ }^{\mathrm{TH}}$ DECEMBER, 2018
MAT 113
DIFFERENTIAL CALCULUS

INSTRUCTION TO CANDIDATES

- SEE INSIDE

INSTRUCTION TO CANDIDATES

i. Answer ALL questions from section A and any THREE from section B
ii. Do not write on this question paper

SECTION A: [31 MARKS]: ANSWER ALL QUESTIONS

Question One : [16 marks]
(a) Differentiate the following functions using the first principles rule
i) $f(x)=\sqrt{x}$
[3 marks]
ii) $f(x)=x^{2}$
[3 marks]
(b) Differentiate with respect to $x, f(x)=5 x^{4}+4 x-\frac{1}{2 x^{2}}+\frac{1}{\sqrt{x}}-3$ [3 marks]
(c) Determine the rate of change of voltage, given $v(t)=5 t \sin 2 t$ when $t=0.2 \mathrm{~s}$
(d) Find a value of c such that the conclusion of the mean value theorem is satisfied for $f(x)=$ $-2 x^{3}+6 x-2$ on the interval $[-2,2]$

Question Two : [15 marks]
(a) State Rolles theorem
(b) Evaluate the limit $\lim _{x \rightarrow 0} \frac{\tan x}{x}$ [3 marks]
(c) Differentiate $f(x)=x^{3} \cos (3 x) \ln x$ [3 marks]
(d) Find the differential coefficient of
i) $f(x)=\frac{4 \sin 5 x}{5 x^{4}}$
[3 marks]
ii) $f(t)=\frac{t e^{2 t}}{2 \cos t}$
[3 marks]

SECTION B[39 MARKS]: ANSWER ANY THREE QUESTIONS
Question Three :[13 Marks]
(a) Find the derivatives of the functions;
i) $f(x)=\sqrt{3 x^{2}+4 x-1}$
[3 marks]
ii) $f(x)=3 \cos \left(5 x^{2}+2\right)$
[4 marks]
(b) Show that the differential equation $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y$ is satisfied when $y=x e^{2 x} \quad$ [6 marks]

Question Four: [13 Marks]
(a) Prove that $\lim _{x \rightarrow 4} 3 x-5=7$
(b) The displacement cm of the end of a stiff spring at time seconds is given by $s=a e^{-k t} \sin (2 f t)$. Determine the velocity at the end of the spring after 1 s if $a=2 m, k=0.9$ and $f=5 \quad[6$ marks]
(c) Determine the turning points of the curve $y=4 \sin x-3 \cos x$ in the range 0 to 2π radians, and distinguish them

Question Five: [13 Marks]

(a) Show that $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4$
(b) A rectangular sheet of metal having dimension 20 cm and 12 cm has squares removed from each of the four corners and the sides bent upwards to form an open box. Determine the maximum possible volume of the box.
[5 marks]
(c) Determine the equations of the tangent and normal to the curve $y=\frac{x^{3}}{5}$ at the point $\left(-1,-\frac{1}{5}\right)$
[5 marks]
Question Six: [13 Marks]
(a) The parametric equations of a cycloid are $x=4(\theta-\sin \theta), y=4(1-4 \cos \theta)$. Determine $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$
[7 marks]
(b) Given $2 y^{2}-5 x^{4}-2-7 y^{3}=0$. Determine $\frac{d y}{d x}$ implicitly.
[6 marks]
Question Seven: [13 Marks]
(a) Find the value of k that makes $f(x)$ continuous at $x=-3$.

$$
f(x)= \begin{cases}x^{2}-4, & \text { if } x \leq-3 \\ k, & \text { if } x=-1\end{cases}
$$

(b) Using logarithmic differentiation to differentiate $f(x)=\frac{(x-1)(x-2)^{3}}{(x-3)}$.
(c) Given that if $y=\tan ^{-1}\left(\frac{\sin t}{\cos t-1}\right)$. Show that $\frac{d y}{d x}=\frac{1}{2}$.

