

OFFICE OF THE DEPUTY PRINCIPAL

ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2018 /2019 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: MAT 104

COURSE TITLE: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

DATE: 11TH DECEMBER, 2018

TIME: 2.00 PM - 5.00 PM

ALIPE UNIVERSITY COLLEGE

FRANKY

1

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES PLEASE TURN OVER

MAT 104

MAT 104: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

STREAM: BSc (Computer Science)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and ANYTHREE Questions in section B. All questions in section B carry Equal Marks Duration of the examination: 3 hours

SECTION A (31 MARKS)

Question One (16 MARKS

a)	Define the	e following terms				
	i.	Conic				(1mk)
	ii.	Combination				(1mk)
b)	solve the	equation $\sin\theta = -\frac{1}{2}$	for values from -180	0° to 180°		(2mks)
c)	Using an	appropriate triangle s	how that $\cos^2 x + \sin^2 x$	$n^2 x = 1$		(3mks)
		proof the t- formula f				(3mks)
e)	e) Change the equation $r^2 = a^2 \cos 2\theta$ into Cartesian coordinates					(2mks)
		he following polar co				(2mks)
g)	Show that	the circles $x^2 + y^2 - 6$	5x + 4y + 2 = 0 and x	$x^{2} + y^{2} + 8x + 2y - 22$	= 0	
are	órthogona	1				(2mks)

Qestion Two (15 MARKS)

a)	Find the tangents common to $x^2 + y^2 = 8$ and $y^2 = 16x$	(4mks)
b)	Show that $Tan(A + B) = \frac{tanA + tanB}{1 - tanA tanB}$	(3mks)
c)	A committee of 6 is to be formed from a group of seven engineers and four	
	mathematicians. How many different committees can be formed if at most 3	
	mathematicians are always to be included	(3mks)
d)	State and proof the cosine rule	(3mks)
e)	If $y = sh^{-1}(\frac{3}{4})$ show that $shy + chy = 2$	(2mks)

SECTION B

Question Three (13 MARKS)

b) Find the equation of hyperbola whose vertices are $(\pm 6,0)$ and one of the direction is x=4

(3mks)

(3mks)

c) Show that
$$shAchB + chAshB = sh(A + B)(3mks)$$

d) Solve $3\cos\theta + 4\sin\theta = 2$ for values of θ from 0° to 180°

2

MAT 104

Question Four (13MARKS)

a)	State the vertex and	focus of the parabola	having the equation;	$(y-3)^2 = 8$	(x - 5) (4mks)
----	----------------------	-----------------------	----------------------	---------------	----------------

- Prove from the definition that $4sh^3x = sh3x 3shx(4mks)$ b)
- Prove that y = 2x + 2 touches $y^2 = 16x$ c)

Question Five (13MARKS)

- Find the distance from the point (1,4) to the line 3x 5y + 2 = 0a) (3mks)
- b) Obtain the acute angle between x - y + 1 = 0 and x + 5y + 1 = 0(3mks)
- Find the vertex, focus, axis and directrix of the following parabola(3mks) c)

$$x^2 - 4x - 8y + 28 = 0$$

Solve the equation $3\cos 2\theta + \sin \theta = 1$ for values of ϑ from 0° to 180° d) (4mks)

Question Six (13MARKS)

- Using the remainder theorem factorize the expression $2x^3 + 3x^2 32x + 15$ a) (3mks) Find the equation of a circle through points (1,5) (-2,3) (2,-1)b) (6mks)Consider a curve $y = x^2 + 2x + 6$ find the equation of the tangent at x = 0 and the c)
 - normal line

Question Seven (13MARKS)

a) Divide $x^2 + 2x + 6$ by x + 1(4mks) b) In triangle PQR, r=5.75 and the sizes of angle P and Q are 42° and 65° respectively calculate the lengths of the remaining sides (3mks) c) Using the standard formula of a circle show the gradient at the point where tangent meets the circle is $-(\frac{x_1+g}{y_1+f})$ (4mks) d) Calculate the length of the tangent from the point (10,3) to the circle $2x^2 + 2y^2 - 4x + 8y - 2 = 0$

(2mks)

(4mks)

(5mks)

3