

OFFICE OF THE DEPUTY PRINCIPAL
ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2018 /2019 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE: MAT 104
COURSE TITLE: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

```
DATE: \(11^{\text {TH }}\) DECEMBER, 2018
TIME: 2.00 PM - 5.00 PM
```


INSTRUCTION TO CANDIDATES

- SEE INSIDE

MAT 104: BASIC MATHEMATICS AND ANALYTIC GEOMETRY

STREAM: BSc (Computer Science)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and ANYTHREE Questions in section B.
All questions in section B carry Equal Marks
Duration of the examination: 3 hours

SECTION A (31 MARKS)

Question One (16 MARKS

a) Define the following terms

$$
\begin{array}{lll}
\text { i. Conic } & (1 \mathrm{mk}) \\
\text { ii. Combination } & (1 \mathrm{mk})
\end{array}
$$

b) solve the equation $\sin \vartheta=-\frac{1}{2}$ for values from -180° to 180°
c) Using an appropriate triangle show that $\cos ^{2} x+\sin ^{2} x=1$
d) State and proof the t - formula for $\sin x$
e) Change the equation $\mathrm{r}^{2}=\mathrm{a}^{2} \cos 2 \theta$ into Cartesian coordinates
f) Convert the following polar coordinates to the Cartesian system ($2,120^{\circ}$)
g) Show that the cireles $x^{2}+y^{2}-6 x+4 y+2=0$ and $x^{2}+y^{2}+8 x+2 y-22=0$ are orthogonal

Qestion Two (15 MARKS)

a) Find the tangents common to $x^{2}+y^{2}=8$ and $y^{2}=16 x$
b) Show that $\operatorname{Tan}(A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
c) A committee of 6 is to be formed from a group of seven engineers and four mathematicians. How many different committees can be formed if at most 3 mathematicians are always to be included
d) State and proof the cosine rule
e) If $y=\operatorname{sh}^{-1}\left(\frac{3}{4}\right)$ show that $\operatorname{sh} y+\operatorname{ch} y=2$

SECTION B

Question Three (13 MARKS)

a) Solve the following quadratic equation by factorization method $2 x^{2}+3 x+1=0 \quad$ (4 mks)
b) Find the equation of hyperbola whose vertices are $(\pm 6,0)$ and one of the direction is $x=4$
c) Show that $\operatorname{sh} A \operatorname{ch} B+\operatorname{ch} A \operatorname{sh} B=\operatorname{sh}(A+B)(3 \mathrm{mks})$
d) Solve $3 \cos \vartheta+4 \sin \vartheta=2$ for values of ϑ from 0° to 180°

Question Four (13MARKS)

a) State the vertex and focus of the parabola having the equation; $(y-3)^{2}=8(x-5)(4 \mathrm{mks})$
b) Prove from the definition that $4 \operatorname{sh}^{3} \mathrm{x}=\operatorname{sh} 3 \mathrm{x}-3 \operatorname{shx}(4 \mathrm{mks})$
c) Prove that $y=2 x+2$ touches $y^{2}=16 x$

Question Five (13MARKS)

a) Find the distance from the point $(1,4)$ to the line $3 x-5 y+2=0$
b) Obtain the acute angle between $x-y+1=0$ and $x+5 y+1=0$
c) Find the vertex, focus, axis and directrix of the following parabola(3mks)

$$
x^{2}-4 x-8 y+28=0
$$

d) Solve the equation $3 \cos 2 \vartheta+\sin \vartheta=1$ for values of ϑ from 0° to 180°

Question Six (13MARKS)

a) Using the remainder theorem factorize the expression $2 x^{3}+3 x^{2}-32 x+15$
b) Find the equation of a circle through points (1,5) (-2,3) (2,-1)
c) Consider a curve $y=x^{2}+2 x+6$ find the equation of the tangent at $\mathrm{x}=0$ and the normal line

Question Seven (13MARKS)

a) Divide $x^{2}+2 x+6$ by $x+1$
b) In triangle $\mathrm{PQR}, \mathrm{r}=5.75$ and the sizes of angle P and Q are 42° and 65° respectively calculate the lengths of the remaining sides
c) Using the standard formula of a circle show the gradient at the point where tangent meets the circle is $-\left(\frac{x_{1}+g}{y_{1}+f}\right)$
d) Calculate the length of the tangent from the point $(10,3)$ to the circle

$$
\begin{equation*}
2 x^{2}+2 y^{2}-4 x+8 y-2=0 \tag{2mks}
\end{equation*}
$$

