

P. O.Box 845-50400 Busia(K) principal@auc.ac.ke Tel: +254 741 217 185 +254 736 044 469 off Busia-Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, RESEARCH AND STUDENT AFFAIRS

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH COMPUTING

COURSE CODE: STA 212

COURSE TITLE: MATHEMATICAL STATISTICS I

DATE: 4th DEC 2019

TIME: 9:00am-12:00noon

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 5 PRINTED PAGES

PLEASE TURN OVER

STA 212: MATHEMATICAL STATISTICS I

STREAM: BSC (ASC)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

Answer ALL questions from section A and ANY THREE Questions in section B. i.

ii. Do not write on the question paper.

SECTION A [31 MARKS]

QUESTION ONE (16 MARKS)

a) Define the term correlation

[2Mks]

b) Let
$$f(x^{1}/x_{2}) = \begin{cases} C_{1} \frac{x_{1}}{x_{2}} \\ 0 \end{cases}$$

 $0 < x_2 < 1 \quad 0 < x_1 < x_2$ elsewhere

$$f(x_2) = \begin{cases} C_2 x_2^4 & 0 < x_2 < 1 \\ elsewhere \end{cases}$$

denote respectively the conditional p.d.f of x_1 given x_2 and the marginal p.d.f of x_2 . Determine

The constants C_1 and C_2 i.

[4Mks]

The joint p.d.f of x_1 given x_2

[3Mks]

iii.
$$pr(\frac{1}{4} < x_1 < \frac{1}{2} | x_2 = \frac{5}{8})$$

[3Mks]

iv.
$$pr(\frac{1}{4} < x_1 < \frac{1}{2})$$

[2Mks]

c) Let the joint pdf of X given Y be defined by
$$f(x,y) = \begin{cases} \frac{x+y}{21} & x = 1,2 \ y = 1,2,3 \\ 0 & elsewhere \end{cases}$$

Obtain the marginal p.d.f of f(x)

[2Mks]

QUESTION TWO (15 MARKS)

Let the joint pdf of x given y be defined by $f(x_1, x_2) = \begin{cases} 2 & 0 < x_1 < x_2 < 1 \\ elsewhere \end{cases}$

Find the

Marginal density function of x_1 and x_2 a)

[4Mks]

Conditional density of x_1 given x_2 b)

[2Mks]

Conditional expectation mean of x_1 given x_2 c)

[3Mks]

Conditional variance of x_1 given x_2 d)

[3Mks]

Expected value of X and Y e)

[3Mks]

SECTION B (39 MARKS)

QUESTION THREE (13 MARKS)

[3Mks]

b) The joint discrete probability density function of X and Y is given by;

х,у	(1,1)	(1,2)	(1,3)	(1,4)	(2,2)	(2,3)	2,4)	(3,3)	(3,4)	(4,4)
f(x,y)	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{2}{16}$	1/16	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{1}{16}$	$\frac{4}{16}$

What is the

i) Density of Y given that X = 2

[2Mks]

ii) Y given that X = 3

[2Mks]

iii) X given that Y = 2

[2Mks]

vi) X given that Y=4

[2Mks]

c) Define the term stochastic independence.

[2Mks]

QUESTION FOUR (13 MARKS)

a) Show that f(x, y) is a p.d.f.

[4Mks]

$$f(x,y) = \begin{cases} \frac{e^{-2\lambda}\lambda^{x+y}}{x! & y! \\ 0 & elsewhere \end{cases}$$

b) From (a) above find the marginal probability density function for X

[3Mks]

c) From (a) above find:

i) f(x/y)

[2Mks]

ii) f(y/x)

[2Mks]

d) If (X, Y) have bivariate cumulative distribution function

$$F(x, y) = 1 - e^{-x} - e^{-y} + e^{-(x+y)}, \quad x \ge 0, y \ge 0$$

Find the joint pdf of X and Y

[2Mks]

QUESTION FIVE (13 MARKS)

Given that X and Y have joint density.

$$f(x,y) = \frac{1}{8}(6-x-y) \ I_{(0,2)}(x), \ I_{(2,4)}(y),$$

Find

a) E[Y/X = x] [3Mks]

b) $E(Y^2/X = x)$ [3Mks]

c) Var[Y/X = x] [3Mks]

d) Show that E[Y] = E[E[Y/X = x] [4Mks]

QUESTION SIX (13 MARKS)

- a) If X and Y have joint probability density function f(x,y) and marginal densities $f_X(x)$ and $f_Y(y)$ respectively. If $M_{XY}(t_1t_2)$ is the joint moment generating function of the distribution of X and Y. Prove that X and Y are stochastically independent iff $M_{XY}(t_1t_2) = M_X(t_1)M_Y(t_2)$ prove; [5Mks]
- b) Given the joint probability distribution of X and Y as shown below;

Y		X	
	0		1
-1	0.125	0.5	
0	0	0.25	
1	0.125	0	

Find

i) The marginal density of X [2Mks]

ii) The marginal density of Y [2Mks]

c) X and Y are two random variables with probability density

$$f(x,y) = \begin{cases} x + y & 0 < x < 1 & 0 < y < 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find correlation coefficient of x and y

[4Mks]

QUESTION SEVEN (13 MARKS)

a) If random variables X and Y have the following distribution

$$f(x,y) = \frac{n!}{x! \, y! \, (n-x-y)!} p^x q^y (1-p-q)^{n-x-y}$$

for

$$x, y = 0,1,2, ... n$$
 and $x + y \le n, 0 \le p, 0 \le q, p + q \le 1$

STA 212

a. Obtain the moment generating function of (X,Y)

[7Mks]

b. Using $M_{X,Y}(t_1, t_2)$ find E(x) and E(y)

[6Mks]
