

P. O.Box 845-50400 Busia(K) principal@auc.ac.ke Tel: +254 741 217 185 +254 736 044 469 off Busia-Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2018 /2019 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE (COMPUTER SCIENCE)

COURSE CODE:

COM 123

COURSE TITLE:

MATHEMATICS FOR COMPUTER SCIENCE II

DATE: 23/4/2019

TIME: 9.00 AM - 12.00 PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES

PLEASE TURN OVER

COM 123: MATHEMATICS FOR COMPUTER SCIENCE II

STREAM: BSC COMPUTER SCIENCE

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and any THREE from section B.

SECTION A

QUESTION ONE (15 MKS)

a. Define the following terms

i.	Conjunction	[1mk]
ii.	Disjunction	[1mk]
iii.	. Negation	[1mk]

iv. Argument [1mk]

v. Implication [1mk]

vi. Biconditional statement [1mk]

b. Differentiate between a tautology and a contradiction. [2mks]c. Consider the following proposition. "If this book is interesting, then I am staying at

home". Write the;

i. converse of the proposition [1mk]ii. Inverse of the proposition [1mk]

iii. Contrapositive of the proposition [1mk]

d. Construct truth tables for the following propositions;

i)
$$\sim p \text{ v q}$$
 [2mks]

$$ii) \sim (p \vee q)$$
 [2mks]

QUESTION TWO [16 MKS]

a) Determine the Boolean expression for the switching circuit shown below. [4mks]

b) Construct the truth table for the switch given in (a) above [5mks]
c) Define the terms predicate and universally true predicate [3mks]
d) Let p be "Audrey speaks French" and let q be "Audrey speaks Danish". Give a simple verbal sentence which describes each of the following
(i) pVq (ii) ~pV~q (iii) ~~p (iv) ~(~p^~q) [4mks]

SECTION B

ANSWER ANY THREE QUESTIONS

QUESTION THREE [13 MKS]

- a) Consider the Boolean algebra D_{210} i. List its elements and draw its diagram

 ii. Find the set A of atoms

 iii. Find two sub algebras with eight elements

 iv. Is $X = \{1,2,6,210\}$ a sub lattice of D_{210} v. Is $Y = \{1,2,3,6\}$ a sub lattice of D_{210} vi. Find the number of sub algebras in D_{210} [1mks]
- b) Differentiate between a universal quantifier and existential quantifier [3mks]

QUESTION FOUR [13MKS]

Express the following Boolean expression E(x, y, z) in dnf and in full dnf.

a) $E_1 = x(y'z)'$ [5mks]

b) $E_2 = z(x' + y) + y'$ [5mks]

c) $E_3 = z(x' + y)' + x'y$ [3mks]

QUESTION FIVE [13MKS]

a) Prove Demorgan's laws;

i. $\sim (p \land q) \equiv \sim p \lor \sim q$ [3mks]

ii. $\sim (p \lor q) \equiv \sim p \land \sim q)$ [3mks]

b) Test the validity of the following statement argument. [5mks]

If a man is a bachelor, he is unhappy.

If a man is unhappy, he dies young.

ALUPE UNIVERSITY GOLLEGE

Bachelors die young.

c) Find the converse of $P \rightarrow Q$

[2mks]

QUESTION SIX [13MKS]

a) Define the following;

i.	Prefix notation	[2mks]
11.	Infix notation	[2mks]
iii.	Postfix notation	[2mks]

b) Let $X = \{a, b, c\}$. Define the relation R on X as $\{(a, b), (b, c)\}$. Find the reflexive, symmetric, and transitive closure of R. Also, find the reflexive and transitive closure of R. [7mks]

QUESTION SEVEN [13MKS]

Consider the circuit in the diagram below

a) Construct a simpler equivalent circuit

[6mks]

b) Verify that the circuits are equivalent by finding their "truth" tables

[7mks]
