

ALUPE UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR

ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2023/2024 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER REGULAR MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS/SCIENCE

COURSE CODE:

MAT 214

COURSE TITLE:

VECTOR ANALYSIS

DATE:

25TH APRIL 2024

TIME: 2.00PM - 5.00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

STREAM: BED (Arts/Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions in this section

Question One (16 Marks)

- a) Find the unit vector parallel to the resultant of vectors, $\vec{r}_1 = 2i + 4j 5k$ and $\vec{r}_2 = i + 2j + 3k$. (4 Marks)
- b) If $\phi = xy^2z$ evaluate $\int_C \phi d\vec{r}$ along the curve C having parametric equations $x = 3t, y = 2t^2, z = t^3$ between $P_1(0,0,0)$ and $P_2(3,2,1)$. (5 Marks)
- c) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is the time,
 - i) Determine its velocity and acceleration at any time, t. (3 Marks)
 - ii) Find the magnitudes of the velocity and acceleration at t = 0. (4 Marks)

Question Two (15 Marks)

- a) Find the unit normal to the surface $x^2y + 2xz = 4$ at the point (2, -2, 3). (5 Marks)
- b) Find the total work done in moving a particle in a force field given by $\vec{F} = 3xyi 5zj + 10xk$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2. (5 Marks)
- c) Determine the values of a so that $\vec{A} = 3i 6j + 2k$ makes with the coordinate axis. (5 Marks)

SECTION A (39 Marks)

Answer any THREE questions from this section.

Question Three (13 Marks)

- a) Find the angles that the vector $\vec{r} = 3i 6j 2k$ makes with the coordinate axes. (6 Marks)
- b) Determine the vector having intial point $P(x_1, y_1, z_1)$ and terminal point $Q(x_2, y_2, z_2)$ and find its magnitude. (4 Marks)

c) If $\emptyset = 2xy^2z + x^2y$, evaluate $\int_C \emptyset d\mathbf{r}$ where C is the curve $x = t, y = t^2, z = t^3$ from t = 0 to t = 1. (3 Marks)

Question Four (13 Marks)

- a) Verify Stokes' theorem for $\vec{F} = (2x y)i yz^2j y^2zk$, where *S* is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and *C* is its boundary. (5 Marks)
- b) Evaluate $\iint_S \vec{F} \cdot \vec{n} dS$ over the entire surface of the region above the xy -plane bounded by the cone $z^2 = x^2 + y^2$ and the plane z = 4, if $\vec{F} = 4xzi + yz^2j + 3zk$. (5 Marks)
- c) If $\vec{A} = (y^2 x^2 z^2) i + (x^2 + y^2) j x^2 y z k$, determine $curl \vec{A}$ at the point (1,3,-2). (3 Marks)

Question Five (13 Marks)

- a) If $\vec{A} = t^2 i t j + (2t+1)k$ and $\vec{B} = (2t-3)i + j tk$ and $\emptyset = 2x^2yz^2$, find
 - i) $\frac{d}{dt}(\vec{A} \circ \vec{B})$ (2 Marks)
 - ii) $\frac{d}{dt}(\vec{A} \times \vec{B})$ (2 Marks)
- b) Show that $\nabla \phi$ is a vector perpendicular to the surface $\phi(x, y, z) = C$ where C is a constant. (4 Marks)
- c) Define the following terms:
 - i) Solenoid Vector (1 Mark)
 - ii) Rectifying plane (1 Mark)
- d) Find the area of the triangle having vertices at P(1,3,2), Q(2,-1,1) and R(-1,2,3). (4 Marks)

Question Six (13 Marks)

- a) Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of 2i j 2k. (4 Marks)
- b) Find the total work done in moving a particle in a force field given by $\vec{F} = 3xyi 5zj + 10xk$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^2$ from t = 1 to t = 2. (4 Marks)
- c) Find the area of the upper cap cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cylinder $x^2 + y^2 = 1$. (5 Marks)

STREAM: BED (Arts/Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions in this section

Question One (16 Marks)

- a) Find the unit vector parallel to the resultant of vectors, $\vec{r}_1 = 2i + 4j 5k$ and $\vec{r}_2 = i + 2j + 3k$. (4 Marks)
- b) If $\phi = xy^2z$ evaluate $\int_C \phi d\vec{r}$ along the curve C having parametric equations $x = 3t, y = 2t^2, z = t^3$ between $P_1(0,0,0)$ and $P_2(3,2,1)$. (5 Marks)
- c) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is the time,
 - i) Determine its velocity and acceleration at any time, t. (3 Marks)
 - ii) Find the magnitudes of the velocity and acceleration at t = 0. (4 Marks)

Question Two (15 Marks)

- a) Find the unit normal to the surface $x^2y + 2xz = 4$ at the point (2, -2,3). (5 Marks)
- b) Find the total work done in moving a particle in a force field given by $\vec{F} = 3xyi 5zj + 10xk$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2. (5 Marks)
- c) Determine the values of a so that $\vec{A} = 3i 6j + 2k$ makes with the coordinate axis. (5 Marks)

SECTION A (39 Marks)

Answer any THREE questions from this section.

Question Three (13 Marks)

- a) Find the angles that the vector $\vec{r} = 3i 6j 2k$ makes with the coordinate axes. (6 Marks)
- b) Determine the vector having intial point $P(x_1, y_1, z_1)$ and terminal point $Q(x_2, y_2, z_2)$ and find its magnitude. (4 Marks)

Question Seven (13 Marks)

- a) Find the area of the surface cut from the bottom of the paraboloid $z = x^2 + y^2$ by the (4 Marks) plane z = 1.
- b) Represent $\vec{F} = zi 2xj + yk$ in cylindrical coordinates. Thus determine F_{ρ} , F_{ϕ} , F_{z} . (6 Marks)
- c) Find the constant a such that the vectors 2i j + k and 3i + aj + 5k are coplanar. (3 Marks)

4

Question Seven (13 Marks)

- a) Find the area of the surface cut from the bottom of the paraboloid $z = x^2 + y^2$ by the plane z = 1. (4 Marks)
- b) Represent $\vec{F} = zi 2xj + yk$ in cylindrical coordinates. Thus determine F_{ρ} , F_{ϕ} , F_{z} . (6 Marks)
- c) Find the constant a such that the vectors 2i j + k and 3i + aj + 5k are coplanar. (3 Marks)
