MAT 216

MAT 216: REAL ANALYSIS I

STREAM: BED (Arts/Science)

DURATION: 3

Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions in this section

Question One (16 Marks)

- a) Suppose $x, y, z \in \mathbb{R}^n$, show that
 - i) $||x+y|| \le ||x|| + ||y||$
 - ii) $||x-z|| \le ||x-y|| + ||y-z||$

(4 Marks)

- b) Show that a sequence (x_n) converges to zero if and only if the sequence $(|x_n|)$ converges to zero. (5 Marks)
- c) Apply the integral test to the series $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$.

(3 Marks)

d) Show that $\lim_{x\to 0} f(x)$ where $f(x) = \frac{|x|}{x} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$ does not exists.

(4 Marks)

Question Two (15 Marks)

- a) Define the following terms
 - i) Interior point
 - ii) Boundary point

(4 Marks)

- b) Let A, B, and C be subsets of a universal set U. show that
 - i) $A \cap (BUC) = (A \cap B)U(A \cap C)$
 - $(AUB)^c = A^c \cap B^c$

(4 Marks)

- c) Let $x, y, z \in \mathbb{F}$, show that
 - i) x + y = x + z, then y = z
 - ii) x + y = 0, then x = -y

(3 Marks)

d) Show that $\lim_{n\to\infty} \frac{1}{n} = 0$.

(4 Marks)

SECTION (39 Marks)

Answer any THREE questions from this section.

Question Three (13 Marks)

- a) Let (s_n) and (t_n) be sequences of real numbers and let $s \in \mathbb{R}$ if for some positive real number k and some $N_1 \in \mathbb{N}$ we have $|s_n s| \le k|t_n|$ for all $n \ge N_1$ and if $\lim_{n \to \infty} t_n = 0$. Show that $\lim_{n \to \infty} s_n = s$. (4 Marks)
- b) Let (s_n) be a sequence of real number. If $\lim_{n\to\infty} s_n = l_1$ and $\lim_{n\to\infty} s_n = l_2$, then $l_1 = l_2$. (5 Marks)
- c) Show that every convergent sequence of real numbers is bounded. (4 Marks)

Question Four (13 Marks)

- a) Let a sequence (s_n) be a bounded sequence. Prove that if (s_n) is monotonically increasing then it converges to its supremum. (4 Marks)
- b) Prove that a monotone sequence converges if and only if it is bounded.

(4 Marks)

c) Show that $(\frac{n+1}{n})$ is a convergent sequence.

(5 Marks)

Question Five (13 Marks)

- a) Prove that every convergent sequence (s_n) is a Cauchy sequence. (5 Marks)
- b) Let S be a nonempty subset of an ordered field φ and $M \in \varphi$. Prove that $M = \sup S$ if and only if M is an upper bound for S and for any $\varepsilon \in \varphi$ with $\varepsilon > 0$, there is an element $S \in S$ such that $M \varepsilon < S$. (8 Marks)

Question Six (13 Marks)

a) Given any two sets A and B, show that if A = B then $(A \subseteq B)\Lambda(B \subseteq A)$.

(4 Marks)

- b) Let $f: X \mapsto Y$ and $g: Y \mapsto Z$ such that $ran(f) \subseteq dom(g)$, prove that
 - i) If f and g are onto then so is the composition function $g \circ f$.
 - ii) If f and g are one-to-one then so is the composition function $g \circ f$.

(5 Marks)

c) Prove that if two sets A and B are open then $A \cap B$ is open.

(4 Marks)

MAT 216

Question Seven (13 Marks)

a) Let A and B be nonempty subsets of \mathbb{R} which are bounded above. Show that the set $S = \{a + b : a \in A \& b \in B\}$ is bounded above and supS = supA + supB.

(5 Marks)

- b) Show that the function f(x) = x is uniformly continuous on \mathbb{R} . (3 Marks)
- c) Given $\lim_{x \to 3} (2x 5) = 1$, find δ such that |2x 5| 1| < 0.01 whenever $0 < x 3 < \delta$. (3 Marks)

d) Define the term supremum. (2 Marks)
