

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS AND SCIENCE

COURSE CODE:

MAT 317

COURSE TITLE:

NUMERICAL ANALYSIS I

DATE: 10^{TH} JUNE, 2022

TIME: 0900 - 1200 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

79

MAT 317

REGULAR - MAIN EXAM

MAT 317 NUMERICAL ANALYSIS I

STREAM: BED (Arts/Science)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

23+2-1

SECTION A (31 Marks)

Answer ALL questions in this section.

Question One (16 Marks)

a) Using Newton-Raphson method, find a root near x = 1 of the equation $f(x) = x^3 + x - 1 = 0$. (4 Marks)

C, P.

- b) Compute a 4D-value of $\ln 9.2$ from $\ln 9.0 = 2.1972$, $\ln 9.5 = 2.2513$ by linear Lagrange interpolation and determine the error, using $\ln 9.2 = 2.2192$ (4D). (5 Marks)
- c) Evaluate the integral $J = \int_0^1 e^{-x^2} dx$ by Gauss integration formula with n = 3. (5 Marks)
- d) What is an error?

(2 Marks)

30

Question Two (15 Marks)

- a) i) Prove that in subtraction, a bound for the error of the results is given by the sum of the error bounds for the terms. (5 Marks)
 - ii) Prove that in multiplication, an error bound for the relative error of the results is given by the sum of the bounds for the relative errors of the given numbers.

 $x^3 + x = 1$ $(3x^2 + 1) = x$

(3x2+1)3+3x+1-1

(5 Marks)

Round off the number 1.23454621 to

2 decimals

x=1.23454621

5 decimals.

(5 Marks)

SECTION B (39 Marks)

Answer any THREE questions.

Question Three (13 Marks)

a) Find a solution of $f(x) = x^3 + x - 1 = 0$ by iteration.

(6 Marks)

b) Find the positive solution of $2 \sin x = x$.

(4 Marks)

c) Find the positive solution of $f(x) = x - 2 \sin x = 0$ by the secant method, starting from $x_0 = 2$, $x_1 = 1.9$. (3 Marks)

then transate

79

MAT 317

Question Four (13 Marks)

+0.0000051

a) Compute cosh 0.56 from the Newton's forward difference interpolation formula and the four values in the following table and estimate the error. (8 Marks)

j	x_j	$f_j = \cosh x_j$	Δf_j	$\Delta^2 f_j$	$\Delta^3 f_j$
0	0.5	1.127626			
			0.057839		
1	0.6	1.185465		0.011865	
			0.069704		0.000677
2	0.7	1.255169		0.012562	
			0.082266		
3	0.8	1.337435			

b) Evaluate $J = \int_0^1 e^{-x^2} dx$ by means of the trapezoidal rule with n = 10. (5 Marks)

Question Five (13 Marks)

Question Five (13 Marks)

a) What is an algorithm?

- b) Integrate $f(x) = \frac{1}{4}\pi x^4 \cos \frac{1}{4}\pi x$ from 0 to 2 with n = 1 apply the error estimation for Simpson's rule by halving h.
- c) Set up a Newton iteration for computing the square root, x of a given positive number c(5 Marks) and apply it to c = 2.

Question Six (13 Marks)

- a) Compute a 7D-value of the Bessel function $J_0(x)$ for x = 1.72 from the four values in the following table, using
 - Newton's forward formula i)

(4 Marks)

Newton's backward formula ii)

(4 Marks)

j_{for}	Ĵback	x_j	$j_0(x_j)$	1st Diff	2nd Diff	3rd Diff
0	-3	1.7	0.3979839			
				-0.0579985		
1	-2	1.8	0.3399864		-0.0001693	
				-0.0581678		0.0004093
2	-1	1.9	0.2818186		0.0002400	
				-0.0579278		
3	0	2.0	0.2238908			

b) Derive the trapezoidal rule.

(5 Marks)

79

Question Seven (13 Marks)

a) Interpolate $f(x) = x^4$ on the interval $-1 \le x \le 1$ by the cubic spline g(x) corresponding to the nodes $x_0 = -1, x_1 = 0, x_2 = 1$ and satisfying te damped conditions $g'(-1) = f'(-1), \ g'(1) = f'(1).$ (11 Marks)

b) Define the following terms:

i) Round off error

ii) Relative error.

(2 Marks)
