

P. O.Box 845-50400 Busia(K)

principal (Lauc.ac.ke Tel: +254 741 217 185 +254 736 044 469 off Busia Malaba road

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS AND SCIENCE AND BACHELOR OF SCIENCE APPLIED STATISTICS AND COMPUTING

COURSE CODE:

MAT 310/311E

COURSE TITLE:

ADVANCED REAL

ANALYSIS/REAL ANALYSIS II

DATE:

3RD FEB 2022

TIME: 9.00AM - 12.00NOON

INSTRUCTION TO CANDIDATES

• SEE INSIDE

THIS PAPER CONSISTS OF 2 PRINTED PAGES

PLEASE TURN OVER

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions from this section.

Question One (16 Marks)

- a) Prove that the constant function f(x) = 1 on [0,1] is Riemann integrable and $\int_0^1 1 dx = 1$. (6 Marks)
- b) Define the following terms
 - i) Continuous function
 - ii) Uniform continuity
- iii) Riemann integral (6 Marks)
- f) Show that the improper integral $\int_0^\infty \frac{\sin(x^2)(x+2)}{x^3+1} dx$ converges. (4 Marks)

Question Two (15 Marks)

- a) Let $f:[0,\infty)\to\mathbb{R}$ be a function defined by $f(x)=\sqrt{x}$. Show that f is continuous on $[0,\infty)$.
- b) Show that the sequence $f_n(x) = x^n$ converges pointwise on [0,1] but not uniformly on [0,1]. (5 Marks)
- c) Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Show that $\lim_{x \to c} f(x) = \lim_{x \to c} x^2 = c^2$. (5 Marks)

SECTION B (39 Marks)

Answer any THREE questions from this section.

Question Three (13 Marks)

- a) Let $\{f_n\}$ be a sequence of continuous functions $f_n: S \to \mathbb{R}$ converging uniformly to $f: S \to \mathbb{R}$. Prove that f is continuous. (8 Marks)
- b) Prove that if $f: I \to \mathbb{R}$ be differentiable at $c \in I$, then it is continuous at c. (5 Marks)

MAT 310/311E

Question Four (13 Marks)

a) Prove that a continuous function $f:[a,b] \to \mathbb{R}$ on a compact interval is Riemann integrable.

(10 Marks)

b) Prove that the function $f(x) = \sqrt{x}$ is differentiable for x > 0.

(3 Marks)

Question Five (13 Marks)

- a) Show that a monotonic increasing function $f:[a,b] \to \mathbb{R}$ on a compact interval is Riemann integrable. (9 Marks)
- b) Prove that series $\sum_{n=1}^{\infty} nx^n$ converges to $\frac{1}{(1-x)^2}$ on (-1,1).

(4 Marks)

Question Six (13 Marks)

- a) Let $f(x) = \frac{1}{|x|+1}$. Show that $\lim_{x \to \infty} f(x) = 0$ and $\lim_{x \to -\infty} f(x) = 0$. (4 Marks)
- b) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Show that f is uniformly continuous. (9 Marks)

Question Seven (13 Marks)

- a) Let $f_n: S \to \mathbb{R}$ be bounded functions. Prove that $\{f_n\}$ is Cauchy in the uniform norm if and only if there exists an $f: S \to \mathbb{R}$ and $\{f_n\}$ converges uniformly to f. (8 Marks)
- b) Let $f:(0,1)\to\mathbb{R}$ be a function defined by $f(x)=\frac{1}{x}$. Show that it is not uniformly continuous.

(5 Marks)
