

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS AND SCIENCE

COURSE CODE:

MAT 415E

COURSE TITLE:

DIFFERENTIAL GEOMETRY

DATE: 9TH JUNE, 2022 TIME: 1400 – 1700 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 3 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 415E DIFFERENTIAL GEOMETRY

STREAM: BED (Arts/Science)

12

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions in this section.

Question One (16 Marks)

- a) Show that $x = te_1 + (t^2 + 1)e_2 + (t 1)e_3$ is a regular representation for all t and find the projections onto the x_1x_2 and x_1x_3 planes. (6 Marks)
- b) Compute the length of the arc $x = 3(\cos 2t)e_1 + 3(\sinh 2t)e_2 + 6e_3$, $0 \le t \le \pi$. (4 Marks)
- c) Find the equations of the tangent line and normal plane to the curve $x = (1+t)e_1 t^2e_2 + (1+t^3)e_3$ at t=1. (4 Marks)
- d) What is a regular curve?

(2 Marks)

Question Two (15 Marks)

- a) Find the curvature vector k and curvature |k| on the curve $x = te_1 + \frac{1}{2}t^2e_2 + \frac{1}{3}t^3e_3$ at the point t = 1. (5 Marks)
- b) Show that the mapping $x = u^2 e_1 + uv e_2 + v^2 e_3$ is a coordinate patch of class C^{∞} on the first quadrant u > 0, v > 0. (5 Marks)
- c) Let x = x(u, v) and $x = x^*(\theta, \phi)$ be coordinate patches on a simple surface S defined on open sets U and U^* respectively and having overlapping images G and G^* on S. Let W and W^* be the subsets of U and U^* respectively which map onto $G \cap G^*$. Show that W and W^* are open sets in their respective parameter planes. (5 Marks)

SECTION B (39 Marks)

Answer any THREE questions.

Question Three (13 Marks)

- a) Prove that f(x) is continuous at x_0 if f(x) is differentiable at x_0 . (6 Marks)
- b) Find the derivative of $f(x)=(x_1\sin x_2)e_1+(x_2\sin x_1)e_2$ in the direction $u_0=\left(\frac{1}{\sqrt{5}}\right)e_1+\left(\frac{2}{\sqrt{5}}\right)e_2$ at $x_0=\left(\frac{\pi}{2}\right)e_1+\left(\frac{\pi}{4}\right)e_2$. (4 Marks)

c) If $\lim_{x \to x_0} f(x) = f(x_0)$, show that f is continuous at x_0 . (3 Marks)

Question Four (13 Marks)

- a) Determine the rank and image of the linear mapping. $y_1=2x_1+x_2\\y_2=-4x_1-2x_2\\y_3=-2x_1-x_2$
- b) Show that the points on the helix $x = a(\cos t)e_1 + a(\sin t)e_2 + bte_3$ at which the osculating plane pass through a fixed point are confined to a plane. (5 Marks)
- c) Find the intersection of the x_1x_2 plane and the tangent lines to the helix $x = (\cos t)e_1 + (\sin t)e_2 + te_3$ (t > 0). (4 Marks)

Question Five (13 Marks)

- a) Show that $x = \frac{1}{2} \left(s + \sqrt{s^2 + 1} \right) e_1 + \frac{1}{2} \left(s + \sqrt{s^2 + 1} \right)^{-1} e_2 + \frac{1}{2} \sqrt{2} \left(\log \left(s + \sqrt{s^2 + 1} \right) \right) e_3$ is a natural representation, that is $\left| \frac{dx}{ds} \right| = 1$. (6 Marks)
- b) Show that the arc $x = t^2 e_1 + \sin t e_2$, $0 \le t \le \pi/2$ is rectifiable. (7 Marks)

Question Six (13 Marks)

- a) If f and g are continuous at x_0 , show that f. g is continuous at x_0 . (7 Marks)
- b) Let $y = (x_1^2 + x_2^2)e_1 + x_1x_2^2e_2$, $x = (u_1\cos u_2)e_1 + (u_1\sin u_2)e_2$. Find the derivatives $\frac{\partial y_1}{\partial u_1}$ and $\frac{\partial y_1}{\partial u_2}$.

Question Seven (13 Marks)

- a) Find the following derivatives of $f(x) = (x_1^2 + x_2^2)g_1 + x_1e^{x_2}g_2 + x_2e^{x_1}g_3$ at the point $x_0 = e_1 e_2$.
 - i) $\frac{\partial^2 f}{\partial x_1 \partial x_2}$ (3 Marks)
 - ii) $\frac{\partial^3 f}{\partial^2 r_* \partial r_2}$ (2 Marks)
 - iii) $D_{v_0 u_0}^2 f$ in the directions $u_0 = (e_1 + e_2)$ and $v_0 = (e_1 2e_2)$. (4 Marks)
- b) Show that the function $f(x) = (e^{x_1} \cos x_2)e_1 + (e^{x_1} \sin x_2)e_2$ satisfies the conditions of the inverse function theorem on E^2 but is not 1 1 on E^2 . (4 Marks)