

ALUPE UNIVERSITY

OFFICE OF THE DEPUTY VICE CHANCELLOR

ACADEMICS, RESEARCH AND STUDENTS' AFFAIRS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER REGULAR MAIN **EXAMINATION**

FOR THE DEGREE OF BACHELOR OF **EDUCATION ARTS/SCIENCE**

COURSE CODE:

MAT 312

COURSE TITLE:

COMPLEX ANALYSIS I

DATE:

16TH DEC 2022

TIME:

2.00PM - 5.00PM

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 4 PRINTED PAGES PLEASE TURN OVER

MAT 312

MAT 312: COMPLEX ANALYSIS I

STREAM: BED (Arts/Science)

DURATION: 3

Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL Questions from section A and any THREE from section B.
- ii. Do not write on the question paper.

SECTION A (31 Marks)

Answer ALL questions in this section

Question One (16 Marks)

- a) Write the following expressions in the form x + iy, x, $y \in R$:
 - i) $(3 + 4i)^2$
 - $\frac{2+3i}{3-4i}.$

(6 Marks)

b) Differentiate $f(z) = z^2 + z$ from first principles.

- (4 Marks)
- c) Let $z_n \in \mathbb{C}$. Show that $\sum_{n=0}^{\infty} z_n$ is convergent if, and only if, both $\sum_{n=0}^{\infty} Re(z_n)$ and $\sum_{n=0}^{\infty} Re(z_n)$ are convergent. (6 Marks)

Question Two (15 Marks)

- a) Let γ denote the circular path with centre 1 and radius 1, described once anticlockwise and starting at the point 2. Let $f(z) = |z|^2$. Write down a parametrisation of γ . Hence calculate $\int_{\gamma} |z|^2 dz$. (5 Marks)
- b) Suppose that $f: D \to \mathbb{C}$ is continuous, $F: D \to \mathbb{C}$ is an antiderivative of f on D, and γ is a contour from z_0 to z_1 . Prove that $\int_{\gamma} f = F(z_1) F(z_0)$. (4 Marks)
- c) Define the following terms
 - i) Anti-derivative
 - ii) Continuous function
 - iii) Open set

(6 Marks)

SECTION A (39 Marks)

Answer any THREE questions from this section.

Question Three (13 Marks)

- a) Let $z_n \in \mathbb{C}$ and write $z_n = x_n + iy_n, x_n, y_n \in R$. Prove that z_n converges if and only if x_n and y_n converge. (4 Marks)
- b) By induction on n, derive De Moivre's Theorem.

(4 Marks)

c) Write the function f(z) = |z| in the form u(x, y) + iv(x, y). Using the Cauchy-Riemann equations, decide whether there are any points in \mathbb{C} at which f is differentiable.

(5 Marks)

Question Four (13 Marks)

a) Find a Laurent series expansion for

$$f(z) = \frac{1}{z^2 \left(z - 1\right)}$$

valid for 0 < |z| < 1.

(4 Marks)

b) Let $f,g:D\to\mathbb{C}$ be holomorphic. Let γ be a smooth path in D starting at z_0 and ending at z_1 . Prove the complex analogue of the integration by parts formula: $\int_{\gamma} fg' =$

$$f(z_1)g(z_1) - f(z_0)g(z_0) - \int_{V} f'g.$$

(5 Marks)

c) Describe the type of singularity at 0 of sin(1/z).

(4 Marks)

Question Five (13 Marks)

a) Show that for $z, w \in \mathbb{C}$ we have

i)
$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

ii)
$$\sin z = \frac{e^{iz} + e^{-iz}}{2i}.$$

(4 Marks)

b) Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{2^n z^n}{n}$.

- (3 Marks)
- c) Let $f(z) = 1/(z^2 + z + 1)$ and let $\gamma(t) = 5e^{it}$, $0 \le t \le 2\pi$, be the circle of radius

5 centered at 0. Use the Estimation Lemma to bound $\int_{V} f(z) dz$.

(6 marks)

Question Six (13 Marks)

a) Let $z, w \in \mathbb{C}$. Show that

i)
$$z \pm w = \bar{z} \pm \bar{w}$$

ii)
$$\overline{zw} = \overline{z}\overline{w}$$

(4 Marks)

b) Let $w_0 \neq 0$ be a complex number such that $|w_0| = r$ and $\arg w_0 = \theta$. Find the polar forms of all the solutions z to $z^n = w_0$, where $n \geq 1$ is a positive integer. (4 Marks)

MAT 312

c) Suppose that z_1 and z_2 are complex numbers, with z_1z_2 real and non-zero. Show that there exists a real number r such that $z_1 = r\bar{z}_2$. (5 marks)

Question Seven (13 Marks)

a) Suppose that $f(z) = x^2 - y^2 - 2y + i(2x - 2xy)$, where z = x + iy. Use the expressions $x = \frac{z+z}{2}$ and $y = \frac{z-z}{2i}$ to write f(z) in terms of z and simplify the result.

(3 Marks)

b) Find all the complex roots of the equation $\cos z = 3$.

(5 Marks)

- c) Compute the following limits if they exist
 - $\lim_{z \to -i} \frac{iz^3 + 1}{z^2 + 1}$ $\lim_{z \to \infty} \frac{4 + z^2}{(z 1)^2}.$

ii)

(5 Marks)
