

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION (ARTS AND SCIENCE)

COURSE CODE:

MAT 114

COURSE TITLE:

INTEGRAL CALCULUS

DATE: 8TH JUNE, 2022

TIME: 1400 – 1700 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF 2 PRINTED PAGES

PLEASE TURN OVER

REGULAR - MAIN EXAM

MAT 114: INTEGRAL CALCULUS

STREAM: EDS, EDB, EDA

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

Answer ALL questions from section A and ANY THREE Questions in section B.

All questions in section B carry Equal Marks

No sharing of scientific calculators.

Do not write on this question paper

SECTION A (31 MARKS): ANSWER ALL QUESTIONS

QUESTION ONE (16 MARKS)

a) Evaluate $\int (5x^2 + 2\cos x) dx$

(3 marks)

b) Using appropriate substitution evaluate $\int_0^{\pi/4} (1 + \sin 2x)^3 \cos 2x \, dx$

(7 marks)

c) Evaluate $\int_0^{\pi/3} x \sec^2 x \, dx$ using integration by parts

(6 marks)

QUESTION TWO (15 MARKS)

a) The region bounded by the graphs of the equations $x^2 = y - 2$ and 2y - x - 2 = 0 and by the vertical lines x = 0 and x = 1 is revolved about the x-axis. Find the volume of the washer (5 marks)

(5 marks)

b) Evaluate $\int \frac{1}{x^2 \sqrt{16 - x^2}} dx$ c) Show that $\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln(x + \sqrt{x^2 - a^2}) + c$

(5 marks)

SECTION B (39 MARKS): ANSWER ANY THREE QUESTIONS

QUESTION THREE (13 MARKS)

- a) Find the area of the region bounded by the graphs of $y + x^2 = 6$ and y + 2x 3 = 0 (8) marks)
- b) Evaluate $\int \sin^5 x \, dx$

(5 marks)

QUESTION FOUR (13 MARKS)

- a) The region bounded by the y-axis and the graphs of $y = x^3$, y = 1 and y = 8 is revolved about the y-axis. Find the volume of the resulting solid. (5 marks)
- b) Evaluate $\int \frac{4x^2 + 13x 9}{x^3 + 2x^2 3} dx$

(8 marks)

QUESTION FIVE (13 MARKS)

- a) Set up an integral for finding the arc length of the graph of the equation $y^3 y x = 0$ from A(0,-1) to B(6,2) and approximate the integral by using Simpson's rule with n=6 and round the answer to one decimal place. (7 marks)
- b) Evaluate $\int \frac{2x-1}{x^2-6x+13} dx$ (6 marks)

QUESTION SIX (13 MARKS)

a) Evaluate
$$\int_{1}^{4} \left(5x - 2\sqrt{x} + \frac{32}{x^2}\right) dx$$
 (4 marks)

b) Using Trapezoidal rule, solve the integral,
$$\int_0^1 \frac{1}{x^2 + 6x + 10} dx$$
 (5 marks)

c) Evaluate $\int (2x^3 + 1)^7 x^2 dx$ (4 marks)

QUESTION SEVEN (13 MARKS)

a) Find
$$\int_0^{10} \frac{1}{1+x^2} dx$$
 using Simpson's one third rule (5 marks)

b) If $f(x) = 3x^{2/3} - 10$ find the arclength of the graph of f from the point A(8,2) to B(27,17) (8 marks)