

OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

CHE 410

COURSE TITLE:

TRANSITION METAL

CHEMISTRY

DATE: 27TH JANUARY, 2022

TIME: 0900 - 1200 HRS

INSTRUCTION TO CANDIDATES

SEE INSIDE

THIS PAPER CONSISTS OF PRINTED PAGES 3

PLEASE TURN OVER

CHE 410

REGULAR – MAIN EXAM

CHE 410: TRANSITION METAL CHEMISTRY

STREAM: BED (Scie)

DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

- i. Answer ALL questions.
- ii. Diagrams may be used whenever they serve to illustrate the answer.
- iii. Do not write on the question paper.

. Question One

- a. State the origin of the color of transition-metal complexes (2 marks).
- b. Chloride ions form the tetrahedral complex ion [AlCl₄] but fluoride ions form the octahedral complex ion [AlF₆]³. Suggest a reason for this difference. (1 mark)
- c. Iron (II) forms a complex in hemoglobin. For each of the two octahedral complex ions $[Fe(H_2O)_6]^{2+}$ and $[Fe(CN)_6]^4$, draw an energy diagram showing orbital splitting, predict the number of unpaired electrons, and identify the ion as low spin or high spin (5 marks).
- d. What are the systematic names of;
 - i. Na₃[AlF₆]? (1 marks)
 - ii. $[Co(en)_2Cl_2]NO_3$? (1 marks)
- e. What is the formula of:
- i. tetraamminebromochloroplatinum(IV) chloride? (1 marks)
- ii. hexaamminecobalt(III) tetrachloroferrate(III)? (1 marks)

Question Two

- a. Discuss the following with respect to trends in the properties of transition metals
- i. Atomic size (1 marks)
- ii. Electronegativity (1 marks)
- iii. Ionization energy (1 marks)
- iv. Density (1 marks)

- b. Using appropriate examples, discuss the classification of ligands (3 marks)
- c. Describe the ligand field theory (5 marks)

Question Three

Explain the following types of isomerism in coordination compounds.

- i. Constitutional isomers (2 marks)
- ii. Stereoisomers (2 marks)
- iii. Coordination isomers (2 marks)
- iv. Linkage isomers (2 marks)
- v. Geometric isomers (2 marks)
- vi. Optical isomers (2 marks)

Question Four

- a. Explain the following terms;
 - i. transition elements (1 marks)
 - ii coordination compounds (1 marks)
- b. Explain why the alloy SmCo₅ forms a permanent magnet (2 marks)
- c. Write electron configurations for the following: Zr, Mo³⁺, V⁺, V²⁺, V³⁺, V⁴⁺, marks) (6
- d. Rank the ions $[Ti(H_2O)_6]^{3+}$, $[Ti(NH_3)_6]^{3+}$, and $[Ti(CN)_6]^{3-}$ in terms of Δ and of the energy of visible light absorbed (2 marks)

Question Five

a. Assign the shape and the coordination number for each of the following complex ions (6 marks)

 $[CuCl_2]^{\text{-}}, [Ag(NH_3)_2]^{\text{+}}, [AuCl_2]^{\text{-}}, [Ni(CN)_4]^{2\text{-}}, [PdCl_4]^{2\text{-}}, [Pt(NH_3)_4]^{2\text{+}}, [Cu(NH_3)_4]^{2\text{+}}, [Cu(CN)_4]^{3\text{-}}, [Zn(NH_3)_4]^{2\text{+}}, [CdCl_4]^{2\text{-}}, [Ti(H_2O)_6]^{3\text{+}}, [V(CN)_6]^{4\text{-}}$

 b. Use the crystal field theory to describe the splitting of d-orbital energies in an octahedral field of ligands and the crystal field splitting energy (use of diagram is preffered) (6 marks)

Question Six

- a. Use appropriate diagrams to describe hybrid orbitals and bonding in the;
 - i. octahedral $[Cr(NH_3)_6]^{3+}$ (2 marks)
 - ii. square planar [Ni(CN)₄] ²⁻(2 marks)
- b. What is the donor atom in each of the following ligands (6 marks)

r# #	2 2	= 2	3.6	2	54	X	97.00	£		
	*	20	1.53	4	近美第15		1.5	Att		
	. 0		3.5	*	5.2	Je.	8.4	1		
		115	18.81	*	53	A	63	12		
	. 0	4 1 m	3.2	Ü	56	Sec	12	#		
	\$	13		3	449	•	18	F		
			3.0	2.5	4.8	Ca	8.3	Als.	112	U.W.
				Co	43	749	275	A.	111	49
			3.8		46	Pus	8.2		112	- Q
				43	4 5	2	17		1999	
			1.0	Į,	4.5		3.8	O	308	169
			7.0	Ha	43	×	75	Ma	102	18 h
			新	ð	42	A.E.				***
			15.5		1	Mg	17		501	40
			22		10.00		7		101	
12			440	X	3.9	*	ī	Ž.	おりま	hede
	* #	12 Mg	20	ð	2	×	25	Z	10	9.250
ar I	15	- 2	61	×	37	â	35	ŭ	97	1

	F	15 3				
	2 £	2 2				
	**	101				
	8 A	150				
	0) to	75 75 TSO				
	99 (0)	# b				
	\$ ¢	7.6				
	50 S	75 FK 97				
dock elements	1 EU	农业				
Mocke	2 5	8 A				
	12 E	75p				
	0 7	20				
		2 2				
	20	9 F				
	150					
		Part Part				
1						