OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE
 MAIN EXAM

COURSE CODE:
COURSE TITLE:

DATE: 18/02/2021

INSTRUCTION TO CANDIDATES

- SEE INSIDE

REGULAR - MAIN EXAM

MAT 104: BASIC MATHEMATICS AND ANALYTIC GEOMETRY STREAM: BSC (CS \& ACS) DURATION: 3 Hours

INSTRUCTIONS TO CANDIDATES

i. Answer All questions from Section A and any Three from Section B
ii. Do not write on the question paper.

SECTION A (31 MARKS)

Question One (16 Marks)
(a) Define the following terms
(i) Gradient
(ii) Radian measure of an angle.
(b) Show that $1+\tan ^{2} \theta=\sec ^{2} \theta$. (4 Marks)
(c) Find the remainder when the polynomial $P(x)=x^{4}+3 x^{3}+2 x+3$ is divided by $x-3$. (3 Marks)
(d) Find the equations of the lines that have the tangents to the curve $y=x^{3}-6 x+8$ and parallel to the line $y=6 x-2$.
(e) Find the equation of the common cord of two circles given by $x^{2}+y^{2}-4 x-2 y+1=0$ and $x^{2}+y^{2}+4 x-6 y+10=0$.
(3 Marks)

Question Two (15 Marks)

(a) Calculate the smallest angle between the minute hand and an hour hand at 6:12. (3 Marks)
(b) Express the following in rectangular coordinates $r^{2}=1+\sin \theta$.
(c) Find the distance of the point $(0,4)$ from the line $2 x+y-7=0$.
(d) Sketch and describe the ellipse $9 x^{2}+25 y^{2}=225$.
(e) A sub-committee of six including a chairperson is to be chosen from the main committee of twelve. If the chairperson is to be chosen from the main committee, in how many ways can the sub-committee be chosen?

SECTION B (39 MARKS)

Question Three (13 Marks)
(a) Define the term angle.
(b) Solve $3 \cos 2 \theta-\sin \theta+2=0$ for $0 \leq \theta \leq 2 \pi$.
(c) Show that $\cosh ^{2} x-\sinh ^{2} x=1$.
(d) Express $\frac{5}{6} \pi$ in degrees.
(e) A new railway line is to be constructed parallel to the existing road, but 14 m away. Find the equation of the railway line if a road passes through the point $(6,4)$ with equation $3 x-4 y=7$.

Question Four (13 Marks)

(a) Define the term hyperbola and write its standard equation when centered at the origin. (2 Marks)
(b) Write an equation of the tangent at the point $(2,2)$ to the curve $x^{2}-2 x y+y^{2}+2 x+y=0$. (4 Marks)
(c) Find the radius and the centre of the circle with the equation $4 x^{2}+4 y^{2}+12 x-16 y=11$. (4 marks)
(d) Express the given equation in polar coordinates $(x+y)^{2}=x-y$.

Question Five (13 Marks)

Consider the hyperbola that has the equation $9 x^{2}-4 y^{2}+18 x+18 y=31$. Find its centre, foci, length, latus rectum, equation of the asymptotes and its vertices. (13 marks)

Question Six (13 Marks)

(a) Evaluate ${ }^{n} C_{2}=1$.
(b) If ${ }^{n} C_{r}=56$ and ${ }^{n} P_{r}=6720$, find r.
(c) Find the equation of the line perpendicular to the line $4 x+5 y+7=0$ and passing through the point $(6,-5)$.
(d) Find the points of intersection of the curve $r=1$ and $r=2 \sin \theta$.
(e) Solve $\sin ^{2} \theta=\frac{1}{4}$ for $0 \leq \theta \leq 2 \pi$.

Question Seven (13 Marks)

(a) Identify the conic with the equation

$$
r=\frac{18}{3-6 \cos \theta},
$$

then find the vertices.
(b) Determine whether the circles $x^{2}+y^{2}-2 x+4 y+2=0$ and $x^{2}+y^{2}+8 x+2 y-22=0$ are orthogonal.
(c) Find the equations of tangent and normal to the curve $y=3 x^{2}-8 x+5$ at the point where $x=2$.
(5 Marks)

