

OFFICE OF THE DEPUTY PRINCIPAL
ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS

2020 /2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

MAIN EXAM

COURSE CODE: MAT 418

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS I

DATE: 16/03/2021
TIME: 1400 - 1700 HRS

INSTRUCTION TO CANDIDATES

- SEE INSIDE

MAT 418

RUGULAR - MAIN EXAMINATION

MAT 418: PARTIAL DIFFERENTIAL EQUATIONS I

STREAM: BED SCI/ARTS

 TIME: 3 HRSEXAMINATION SESSION: MARCH YEAR: 2020/2021

INSTRUCTIONS TO CANDIDATES

(i) Answer all questions in section A (Compulsory)
(ii) Answer any other THREE questions in section B
(iii) Answers should be comprehensive, informative and neat.

SECTION A (31 MARKS)

Question One (16 Marks)

a). What is a partial differential equation?
(1 Mark)
b). Find the general solution to the equation $2 u_{x}+3 u_{y}+8 u=0$.
c). Find the equation of the tangent plane to the hyperboloid $4 x^{2}-9 y^{2}-9 z^{2}-36=0$ at point $(3,3,2)$.
(4 Marks)
d). Solve the differential equation $z=p x+q y+p^{2}+q^{2}$ where $p=z_{x}$ and $q=z_{y}$.
(3 Marks)
e). Find the Monge's form of the equation of the surface $x=u+v, y=u-v, z=4 u v$.
(3 Marks)

Question Two ($\mathbf{1 5}$ Marks)

a). Form a p.d.e whose solution is $\phi\left(x^{2}+y^{2}+z^{2}, x y z\right)=0$
(3 Marks)
b). Find the equation of the normal plane to the curve at the intersection of the surfaces $z_{1}=$
$x y+x$ and $z_{2}=2 y$ at point $(1,0,1)$.
c). Find the equation of the normal line to the surface $x=u, y=v, z=\frac{1}{2}\left(u^{2}-v^{2}\right)$ at $p_{0}(3,1,2)$.
(4 Marks)
d). Find the integral surface of the set of equations

$$
\begin{equation*}
\frac{d x}{x\left(y^{2}-z^{2}\right)}=\frac{d y}{y\left(z^{2}-x^{2}\right)}=\frac{d z}{z\left(x^{2}-y^{2}\right)} \tag{5Marks}
\end{equation*}
$$

SECTION B (39 MARKS)

Question Three (13 Marks)

a). Find the surface which orthogonally intersects the surface of the system $z x+z y=c(z+1)$ which passes through the circle $x^{2}+y^{2}=1, z=1$.
(8 Marks)
b). Find the integrating factor hence solve the equation

$$
\begin{equation*}
2 x^{2} y d x+\left(x^{3}+2 x y\right) d y=0 \tag{5Marks}
\end{equation*}
$$

Question Four (13 Marks)

a). Find the integral surface $\phi\left(c_{1}, c_{2}\right)=0$ of the quasi-linear p.d.e.

$$
\begin{equation*}
x u_{x}+y u_{y}+x y\left(z^{2}+1\right)=0 \tag{7Marks}
\end{equation*}
$$

b). Show that the surface $F(x, y, z)=x^{2}+4 y^{2}-4 z^{2}-4=0$ and $G(x, y, z)=x^{2}+y^{2}+$ $z^{2}-6 x-6 y+2 z=0$ are tangent at point $P(2,11)$.
(6 Marks)

Question Five (13 Marks)

a). Find the integral curves of the equation

$$
\begin{equation*}
\frac{d x}{m z-n y}=\frac{d y}{n x-l z}=\frac{d z}{l y-m x} \tag{5Marks}
\end{equation*}
$$

b). Find the auxiliary equations for orthogonal trajectories on the conicoid $z(x+y)=1$ of conics which its cut by the system of planes $x-y+z=k$ where k is a parameter. ($\mathbf{8}$ Marks)

Question Six (13 Marks)

a). Find the integral curves of the equation at $x^{2}+y^{2}=1$ when $z=1$.

$$
\begin{equation*}
\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)} \tag{8Marks}
\end{equation*}
$$

b). Find the equation of the tangent plane to the curve $x=\cos t, y=3+\sin 2 t, z=1+\cos 3 t$ at $t=\frac{\pi}{2}$.

Question Seven (13 Marks)

a). Find the solution to the system

$$
\begin{equation*}
\frac{d x}{y+z}=\frac{d y}{y}=\frac{d z}{x-y} \tag{7Marks}
\end{equation*}
$$

b). Find the Complete solution of the equation $z=p^{2}-q^{2}$

