

OFFICE OF THE DEPUTY PRINCIPAL
ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:
 CHE 103

$\begin{array}{ll}\text { COURSE TITLE: } & \text { INTRODUCTION TO KINETICS AND } \\ & \text { THERMODYNAMICS }\end{array}$

INSTRUCTION TO CANDIDATES

- SEE INSIDE

REGULAR - MAIN EXAM

INSTRUCTIONS TO CANDIDATES

Answer ALL questions.

Question One

a) Distinguish between an ideal gas and a real gas
b) Derive the following gas equations;
i) An ideal gas equation
ii) Van der Waals equation
c) List factors that cause a gas not to be ideal
d) Write down the first law of thermodynamics and define the terms
e) Distinguish between the following thermodynamic processes
i) Closed system
ii) Adiabatic system
iii) Isolated system (1 Mark)
f) What are;
i) Extensive variables
ii) Intensive variables

Question Two

a) Define the following chemical terms;
i) Collision frequency of the system
ii) Activation energy
b) Explain how the following factors affect the rate of reaction;
i) Concentration
ii) Pressure
iii) Temperature
iv) Catalysts

CHE 103

c) Consider the reaction $\mathrm{RX}+\mathrm{OH}^{-} \rightarrow \mathrm{ROH}+\mathrm{X}^{-}$

The following rate data were obtained at constant temperature

Initial concentration of $\mathrm{RX} / \mathrm{moldm}^{-3}$	Initial concentration of $\mathrm{OH} / \mathrm{moldm}^{-3}$	Initial rate/ moldm ${ }^{-3} \mathrm{~s}^{-1}$
0.01	0.04	8×10^{-3}
0.01	0.02	4×10^{-3}
0.005	0.04	4×10^{-3}

i) What is the order of reaction with respect to OH^{-}
ii) What is the order of reaction with respect to RX^{-}
iii) Write the rate equation
iv) Calculate the rate constant
d) Using relevant example illustrate how first order, second and third order reactions can be determined using graphical method

Question Three

a) Photosynthesis is an endothermic reaction: $6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \Delta \mathrm{H}=$ $+2802 \mathrm{kJmol}^{-1}$
i) What will be the enthalpy change for the following reaction;
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
ii) Calculate the amount of light energy required to make 1000 g of glucose
iii) Calculate the amount of light energy required to absorb $500 \mathrm{~cm}^{3}$ of carbon dioxide is at 298 K and 100 kPa
iv) Calculate the mass of glucose which can be made when a tree absorbs 10,000 kJ of light energy
b) A spirit burner containing butan-1-ol $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)$ was used to heat $200 \mathrm{~cm}^{3}$ of water in a copper can by $20^{\circ} \mathrm{C}$. As a result, the mass of the spirit burner decreased by 0.81 g . Calculate the molar enthalpy of combustion of butan-1-ol
c) Zinc will displace copper from copper (II) sulphate solution according to the following equation:

$$
\mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Cu}_{(\mathrm{s})}+\mathrm{ZnSO}_{4(\mathrm{aq})} .
$$

If an excess of zinc powder is added to $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3}$ copper (II)
sulphate, the temperature increases by $6.3^{\circ} \mathrm{C}$. Calculate the molar enthalpy change for the reaction
d) Distinguish between homogeneous and heterogeneous catalysis

Question Four

a) Define entropy
b) Write the thermodynamic expression of determining entropy and Gibbs free energy (3 Marks)
c) The reaction $\mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}$ has a $\Delta \mathrm{H}$ of $+176 \mathrm{kJmol}^{-1}$ and a $\Delta \mathrm{S}$ of $+176 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. What is the free change for this reaction at 298 K ?
d) Briefly explain the importance of Maxwell-Boltzmann distribution of molecular energies in thermodynamic process

