OFFICE OF THE DEPUTY PRINCIPAL ACADEMICS, STUDENT AFFAIRS AND RESEARCH

UNIVERSITY EXAMINATIONS 2020 /2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAREXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION ARTS

COURSE CODE:

COURSE TITLE:

MAT 111
GEOMETRY AND ELEMENTARY APPLIED MATHEMATICS

DATE: TIME:

INSTRUCTION TO CANDIDATES

- SEE INSIDE

MAT111: GEOMETRY AND ELEMENTARY APPLIED MATHEMATICS

STREAM: BSc (CS)

DURATION: 3 Hours

INSTRUCTION TO CANDIDATES

i. Answer ALL questions from section \boldsymbol{A} and any THREE from section B
ii. Do not write on the question paper.

SECTION A (31 MARKS): ANSWER ALL QUESTIONS IN THIS SECTION.

QUESTION ONE[16MARKS]

a) Find the distance between $A(2,-3)$ and the line $L: 3 x-4 y+2=0 \mathrm{~L}: 3 x-4 y+2=0 .[4 \mathrm{mks}]$
b) Convert $2 x-5 x^{3}=1+x y$ into polar coordinates.[4mks]
c) Find the distance between the points $P_{1}(3,-1,5), P_{2}(2,1,-1)$
[4mks]
d) Find the distance from the point $(-1,2,1)$ to the line $(1,1,1)+t(2,3,-1)$.
[4mks]

QUESTION TWO[15MARKS]

a) Seagull can fly at a velocity of $9.00 \mathrm{~m} / \mathrm{s}$ in still air.If
i. it takes the bird 20.0 min to travel 6.00 km straight into an oncoming wind, what is the velocity of the wind?
[3mks]
ii. the bird turns around and flies with the wind, how long will it take the bird to return 6.00 km ?
[3mks]
b) A car of mass 1.2 tonnes is travelling along a straight horizontal road at a speed of $20 \mathrm{~ms}^{-1}$ when it brakes sharply then skids. Friction brings the car to rest. If the coefficient of friction between the tyres and road is 0.8 , calculate the:
i. deceleration.
ii. distance travelled by the car before it comes to rest.
[3mks] [3 mks]
c) A particle A, of mass 2 kg , collides with a particle B, of mass 3 kg . The velocity of particle A before the collision was $(4 i-3 j) m s^{-1}$ and the velocity of particle B before the collision was $(4 i+4 j) m s^{-1}$. Given the velocity of particle A after the collision was $(3 i+2 j) \mathrm{ms}^{-1}$, what was the velocityof B after the collision?

SECTION B:ANSWERANY THREE QUESTIONS [39MARKS]

QUESTION THREE[13MARKS]

a) Find the area of a triangle with vertices: $A(0,-3), B(5,0), C(0,3)$
b) Convert $r=-8 \cos \theta$ into Cartesian coordinates
c) Find the standard equation of the spherewith center $(10,7,4),(-1,3,-2)$

QUESTION FOUR[13MARKS]

a) Find the distance from the point $(1,2,3)$ to the plane $2 x-y+3 z=5$ [5mks]
b) Find the equivalent force -couple system about 0 .

QUESTION FIVE[13MARKS]

a) Find the equation of the line passing through $(5,-1,3)$ having direction $\vec{v}=(1,0,-2)$. Express your answer in
i. Symmetric form
ii. Vector form
iii. Parametric form
iv. Find two other points on the line [2mks]
b) Consider the plate subjected to the four external loads shown in the figures below. An equivalent force-couple system F-M, with the force acting at the centre of the plate, can be calculated through?

QUESTION SIX[13MARKS]

a) Determine the x, y components of the 3 forces.

b) Derive an equation for center of $\operatorname{mass} r_{C M}$ of a systemconsisting of two points as shown below.
[5mks]

QUESTION SEVEN[13MARKS]

a) A pitcher tosses a baseball straight up, with an initial speed of $25 \mathrm{~m} / \mathrm{s}$.
i. How long does it take to reach its highest point?
ii. How high does the ball rise above its release point?
iii. How long will it take for the ball to reach a point 25 m above its release point.
[3mks]
b) For the 45° position of the pump handle with force P perpendicular to the handle, determine graphically the angle θ between the handle and the compensating link $A B$ which enables the force transmitted to the plunger to be along its vertical axis.

